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Abstract 

We consider the problem of bounding the complexity of the 
fe-th level in an arran^ment of n curvra or surfM«s, a prob- 
lem dual to, and «rtending, the iirell-known k-aet pmblem. 
(a) We review and simplify some old proofe in new disguise 
and give new proofis of the bonnd 0(n%/k +1) for the com- 
plexity of the fc-th level in an arran^ment of n lines, (b) We 
derive an improved version of LovAsz Lcnuna in any dimen- 
sion, aad use it to prove a new bound, 0(n*it'^*), on the 
complexily of the ft-th level in jui arrangement of n planes in 
]tf, or on the number of fc-sets in a set of n pointe in three 
dimensions, (c) We show that the complexity of any single 
level in an arrangement of n line segments in the plaoie is 
0{w?'^), and that the complexity of any single level in an 
arrangement of n triangles in 3-space is 0(n*^/*), 

through a pair of points of S and have exactly h points of 
S in one of the open halfplanes that they define? In a dual 
setting, we are pven a set £ of n lines in the plane in ^neral 
position, and want to boimd the maximum p<»sible number 
of vertices v of the arrangement AiC), sndi that ^actly k 
lines pass below ». We denote this set of vertices by F». 
(Strictly q>^ldng, |Ft| is a slightly diffierent quantity than 
the one defined above, as it corresponds to the mmiber of 
lin« passing through two of the pven points and having 
exactly fc of the remaining points hdom them.) A slightly 
different variant of the dnal problem is to define the fe-tt 
fewel of the arrangement, as the cl<Kure of the set of points 
that lie on the lines and haw exactly k lin« below them, 
and seek a bound on the number of verticra of that lewl. 
(Each vertex of this closure may have either kotk-l lines 
below it.) See Figure I for an illustration. 

1    Introduction 

Background. The k-aet problem is one of the mcKt chjj- 
lenging open problems in combinatorial geometry. The sim- 
plest variaujt of the problem is: Given a set S of n points in 
the plane in general p<»ition, and a parameter 0 < ib < n—2, 
what is the maximum po^ible number of lines that pa^ 
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Figure 1: The third level in an arrangement of lines. The 
vertices of Vj are indicated by empty circte and the vertices 
of Vz axe marked by black circte. 

The *-set problem was first studied about 1970 by Brdos 
et al. and by Lovisz [11,19]. These papers have ratablished 
an upper bound 0(n^k +1) and a lower bound n(nlog(fe-|- 
1)) on the desired quantity, leaving a fairly big gap that is 
stiU mtKtly open. The only ftirther progre^ on this problem 
is due to Pad» et al. [21], where the upper bound is sBghtly 
improved to 0(ns/k+l/ log* (* -I-1)); see [4,10] for related 
results. 

In the dual setting, the problem can be generalized in an 
obvious manner: In the plane, we are given a collection S 
of n i-monotone curves, each being the graph of a contin- 
uotis totally or partially defined function, and a parameter 
0 < fc < n, and wish to boimd the complexity (i.e., the num- 
ba of vertices) of the fc-th levd in the arrangement A(B), 
defined exactly as in the case of lines. In tim more gMieral 
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setting only two results are known: A recent seemingly weak, 
but elegant analysis by Tamaki and Tokuyama [23] yields the 
bound 0(71^''"') on the complexity of a level in an arrange- 
ment of n pseudo-parabolas, which are graphs of total func- 
tions, each pair of which intersect at most twice. We also 
mention the case of pseudo-hnes, which are x-monotone con- 
nected curves, unbounded at either end, each paur of which 
intersect exactly once, where a slightly larger lower bound 
of il{n ■ 2=v'°«") for the complexity of the median level is 
established in [18]. Our proof techniques and upper bounds 
apply equally well to the case of pseudo-lines. 

Similar extensions apply in higher dimensions. In the 
primal setting, we are given a set 5 of n points in R* in 
general position, and wish to bound the number of hyper- 
planes passing through d of the points such that one of the 
halfspaces that they bound contains exactly k points of S. 
For d = 3, the best known upper and lower bounds are, 
respectively, C>{n*/') and n(n*log7i) [3, 8). For <f > 3, 
the best known upper bound is 0(n'^~'^''), for some expo- 
nentially small but positive constant Cd [26]. Note that, in 
contrast to the planar case, these bounds depend only on n 
and not on k. 

We can formulate the problem in general dimension, in 
a dual setting: We consider an arrangement of hyperplanes, 
or, more generally, of siirfaces that are graphs of continuous 
total or partial fiinctions, and define the fc-th level of the 
arrangement exactly as in the planar case. We now seek 
bounds on the maximum possible number of vertices (or of 
faces of all dimensions) of the level. Except for the case of 
hyperplanes, which is equivalent to the fe-set problem men- 
tioned in the preceding paragraph, no nontrivial bounds for 
the entire range of values of k are known. 

In spite of the sorry state of the problem, one can obtain 
nontrivial bounds when k is small. The probabilistic analy- 
sis of Clzu-kson suid Shor [7] (see also [22]) yields fairly sharp 
bounds on the combined complexity of the first k levels in 
arrangements. For the case of hyperplanes, for example, the 
bound is e{n^''^^^k^'''^'^). For sufficiently small fc, this gives 
a better upper bound on the complexity of a single level than 
the general bound stated above. The analysis of Clarkson 
and Shor [7] also implies, under fairly general assumptions 
that, for a constant fc > 0, the worst-case number of ver- 
tices of the A;-th level is asymptotically proportional to the 
maximum possible number of vertices on the lower envelope 
(i.e., the 0-th level) of the surfaces. 

New Results. In this paper we laake several contribu- 
tions to these problems: 

We first review some old proofs in new disguise, and 
present new proofs of the upper bound 0(nVk + 1) for the 
original planar fc-set problem (or, dually, for the case of the 
fc-th level in an arrangement of n str2iight lines in the plane). 
We review the proof technique of Gusfield [13], which, as 
we perceive, is not well known within the combinatoriaJ and 
computational geometry communities, and show its relation- 
ship to other proofs. We also give a simple proof of the dual 
version of what we call "Lovdsz Lemma" (see Lemma 2.3 be- 
low) that is used to prove the bound. As is well known, these 
techniques apply equally well to aurangements of pseudo- 
lines; see, for example, [12]. 

We adapt two of our proof techniques to yield the bound 
0{n^'^) on the complexity of a single level in em arrangement 
of n line segments (or "pseudo-segments," to be defined be- 
low). As far as we know, this bound is new. 

We then proceed to study the problem in higher dimen- 
sions. First we obtain an improved version of Lovisz Lemma 

that has a rather simple proof. Specifically, we show that no 
line can intersect more than 0{k''~') k-set simplices, where 
a k-set simplex is a (rf - l)-dimensional simplex, spanned 
by d points of S, such that the hyperplane conteiining the 
simplex has exactly k points of S in one of its open half- 
spaces. The previous bound was ©(n**"') (see [3, 19]), so 
this is a significant improvement when fc < n. Plugging 
the new bound into the analysis technique of [8], we show 
that the complejdty of the A:-th level in an arrangement of 
n planes in 3-space, and thus, the number of fc-sets in a 
set of n points in R^, is 0(n^fe^''^). This is the first general 
bound for arrangements of planes that depends on k, besides 
the aforementioned 0{nk ) bound on the overall complex- 
ity of the first k levels. The new bound is an improvement 
when k = Q{n^^*). A similar improved bound, of the form 
0{n''~'^''~'''k'''), can be obtained in any dimension d > 3, 
for appropriate constants Sd, cj, depending only on d, by 
combining the strengthened Lovdsz Lemma with the analy- 
sis of Zivaljevid and Vtetica. [26]; see also [3]. 

Finally, we consider the case of triangles in 3-space, and 
show that the complexity of a single level in an arrangement 
of n such triangles is 0(n'^''*). 

2   Arrangements of Lines 

Let £ be a collection of n Unes in the plane in general po- 
sition. Let Vi, for fc = 0,.. .,n - 2, denote, as in the in- 
troduction, the set of vertices of the arrangement A(C) that 
have exactly k lines below them. Then the set of vertices of 
the fc-th level is Vk U Vk-i (or just Vk, for k = 0). When 
the level passes through a vertex of Vk-i (resp. of Vk), it 
bends to the left (resp. to the right) as we traverse it in the 
positive i-direction. See Figure 1. 

In this section we give four proofs of the following well- 
known result (which, as already pointed out, provides an es- 
timate which is slightly larger than the best currently known 
upper bound of Pach et al. [21]): 

Theorem 2.1 The complexity of the k-th level of A{C) is 
0(nVkTT). 

Remark: In most of the following proofe we will actually 
argue that |Vi_i| = 0{n\/k). The claimed bound on the 
number of vertices of the Ai-th level follows by repeating the 
argument for |Vife| and combining the two estimates. 

First Proof (PotenticJ EHinction): This proof is not 
new, and is an adaptation of the analysis technique of Gus- 
field [13, 14]. We give it for the sake of completeness, and 
because we will shortly apply a variant of it to the case 
of segments. We note that the way it is presented below 
is somewhat different than Gusfield's own analysis; we will 
further comment on Gusfield's analysis later on. 

Let the lines in Che ii,l2,... ,ln, sorted in the order of 
decreasing slope, and let k denote the given level. For any 
a 6 R, we say that the level of a line i e C is j at a it 
exactly j lines of C intersect the vertical line x = a below £. 
For each i 6 R, define the potential function 

*(i) = ^{j I the level of tj at x is < *} . 

We clearly have *(-oo), *(-f-oc) = O(nfc) (in fact, *(r) = 
0{nk) for each x). As we sweep A{C) with a vertical line 
from left to right, the value of $(2) can change only when x 
equals the abscissa Vx of a vertex v&Vk-i (refer to Figure 1; 
note that *(x) does not change at vertices of 14.) Suppose 
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that V € 14-1 is the intersection of lines £j and tj, with j > i. 
Then, as easily chedced, the change A#(Ba.) = #(tij + e) — 
^{vx-e), for a sufficiently smdl e > 0, is j—t > 0. In other 
words 

#(+oo) = *(-oo) +   J2   A#(w:,) = 0(nfc), 

with ewh of these change b«ng a positive integer. 
The number of vertic« t> at which A#(vj) > v'Jfc is no 

more than 0(ns/k), as the sum of A#(wj) at these ver- 
tices is Oif^), and each t«rm In the sum is larger tham s/k. 
Concerning » at which the change is at most ^/k, there are 
at most n — 1 vertices with corresponding pairs of indices 
{»,» +1), n - 2 vartic« with pairs {», t + 2), etc., for a total 
of 

(n-l) + (n-2) + ... + {n-v^+l)<n\/fc 

vertic^. Combining the two estimate, we conclude that 
iH-i| = 0{n\/h), In h/A, a more careful counting pv^ the 
bound 2ns/k. D 

Second Proof (Concave Chains)t Let V^-i denote, as 
above, the set of aO vertices of the fc-th level of A{C) at 
which the level makes a left turn, pacing from a line with 
smaller slojse to a line with larger slope. We associate with 
the t-th le^ a collection of k concave chains, where ead» 
such dicdn is an unbounded a;-monotone concave poly^nal 
curve contained in the union of the lines of C. (As will be 
seen below, the chains in a certain sense "cover" the portion 
of A{C) below the level.) This is done as follows. The 
desired chains, denoted ci,.,,,ci;, start at a; = —oo along 
the fc lotrest lines of the arranpment (these are the lines 
with the fc largest slopes). Whenever some chain Ci readire 
the fc-th level, we are at a vertex v € Vk-u as is easily 
checked. We then continue Ci to the right adong the other 
line incident to v. The chdns bend only at vertices of Vu-x; 
otherwise eadi diain follow the line it is on. See Figure 2 
for an illustration. 

Figure 2: The concave chsuns a^ociated with the third level; 
the level itself is drawn in bold, and the dashed paths denote 
the concave chains ci,C2,cs. 

It is easily s«n that the r«ulting chains satisfy the fol- 
lowing properties: 

(i) The union of the chaiM is the closure of the portion 
of the union of the lines that lies below the fc-th level. 
Ebccept for the vertices of Vk-i, the union of the chains 
lies strictly below the fc-th level. 

(ii) The chains are vertex-disjoint and have non-owrlapping 
edges, but they generally cross each other. 

(iii) All the vertices of the chains Be on the upper envelope 
of the chaans. Indeed, each chain, except for its ver- 
tices, HM fully below the fc-th level, so any vertex of 
any chain lies above afl the chdns that sxe not incident 
to it. 

Gusfield's analysis, with minor modifications, essentially t&- 
tablishes the following more general bound. The same result 
has been obtained independently by H^perin and Sharir [15], 
who were not aware of Gusfidd's earlier work: 

Theorem 2.2 ([13, 14, 15]) ffte ovantt nwnAer of oer- 
ii<xs ofk concave chains, which are vertex-disjoint and have 
non-overtapping edges, in an arrangement of n lines in the 
plane, is 0{n\/k). 

This result dearly yields another proof Theorem 2.1. We 
leave it to the rewler to wrify that the potential-function 
proof applies, almcMt verbatim, to the general case of con- 
cave chains. Q 

Note that the i^xsve bound does not count crc^np be- 
tween chmns. 

Remarks: (1) If the concave diains are not allowed to CT<^ 

eadi otho-, then their overall complexity is only 0(fc^'*n'/*+ 
n), as shown in [15,16], but the analysis in these papers cro- 
dally relies on the £MA that the diains cannot cross. 

(2) The chains assodated with the fc-th level have the ad- 
ditional property (iii) that jdl their vertices appear on thdr 
upper envelope. Can a sharper upper bound be proved for 
the complexity of fc concave chains with this extra property? 
Note, however, that property (iii) is not strong enough to 
improve the bound beyond 0(fc^/*n*/' -|- n), as it is possi- 
ble to produce a collection of fc chains in an arrangement of 
n lines with a total of n(fc*/'n^/' -I- n) vertices, so that all 
these vertices occur on the combined upper envdope of the 
chains [17]. 

Third Proof (Concave Chains and Lovasz Lemma): 
One of the standard (and among the first) ways to prove 
the theorem is via the following statement, which we will 
refer to as "Lovfcz Lemma" [19]. It is usually stated in the 
primal plane, for a coUection of n points, but we will state 
a dual version of the lemma, for ananpments of lines, amd 
^ve a simple proof that uses the concave chain structure, 
with the aim of extending it to other types of arrangements. 

Let £ be a collection of n lines In the plane in general 
pMition, and let 1 < fe < n - 1. For eadi vertex v € F*_i, 
let Wv denote the double -sredge formed by the two linra that 
meet at v (W„ is the region between the upper amd lower 
envdopes of these two lines). See Figure 3. 

Lemma 2.3 (Dual Lov^z Lemma In 2D) For any point 
z in the plane not lying on any tine of C, the number of 
double wedges W», for v € Vt-i, Aat cordain z ia at most 
2min {fc, j} < 2fc, when j is the number of linea of C that 
pass below z. Actually, there one o< most min {k,j} left 
wedges and at most min (fc, j} right wedges that contain z. 

Proof: Let c be one of the concave chains obtained in the 
previous proof, and consider the system of double wedges 
W», over all vertices v of c. The concavity of c is easily seen 
to imply that z can lie in at most two of these double wedg^ 
(in at most one ri^t wedge and in art; most one left wedge). 
Since we have fc sudi chauM, z can lie in at mc«t 2fc double 
wedges WB, for t> 6 Vk-x- Moreowr, if z Ues above exactly 
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Figure 3: The setup for Lov^z Lemma for the case of lines. 
The right wedges of W„, Wu are shown shaded. 

each of the Wij common lines. That is, both c, and Cj lie 
below (or on) the lower envelope E of these lines, so each 
chain touches each of these lines only at its unique segment 
that appears on the lower envelope. It follows that Cj and 
Cj must intersect each other at least once below each of the 
Wij segments of E, so Uj, the number of crossings between 
d and Cj, must be at least u^ij. See Figure 4. We thus 
have J2.J Wij < J^^ . Uj < nk, where the latter inequality 
follows from the fact that the number of cheun-crossings is 
equal to the number of vertices of A{C) at level < k, and 
this number is known to be at most nk [1]. This implies 
that 

IV, k-l I   <   (2nr''(Y^Wi,)      +n- 

<   (2nYf\nky'' + n-k 
=   2'/^Tj\/jfc + n-Jfc. 

Note that the constant of proportionality is better than 
those yielded by the earlier proofs. D 

j <k lines of C, then it lies only above j concave chains, and 
can therefore only belong to double wedges corresponding to 
vertices of these chains. This easily implies the lemma, n 

We can now complete the third proof of the theorem, 
using an analysis ducil to that in the original proof in [19]. 
That is, fix a vertical line A, and intersect each W^, for 
V 6 Vit-i, with X, to obtain a system of |Vit_i| intervals on A, 
having a total of n endpoints (which are the intersections of 
the lines in C with A). It follows by a simple (and standard) 
counting argument (such as in [5, 19]) that A must contain 
a point that lies in at least |Vifc_i| /4n^ intervals. Since 
this number cannot be more than 2k, we obtain |Vib-i| < 
2\f2n\fk. With some care, this can be improved to ln\/k.U 

Fourth Proof (Concave Chains and Cauchy-Schwarz 
Inequality): Let L = {£i,...,fn} be a set of n lines, k 
be an integer between 0 and n - 2, and ci,..., ct be the 
concave chains associated with the A:-th level of A{C), as 
defined above. 

Let Wij denote the number of lines common to chains a 
and Cj, for 1 < t < j < A:. For each g = 1,... ,n, let Af, 
denote the number of chains that have an edge contained in 
£,. Note that |Vfc_i| = J]" 
we have 

Hence, 

g=! On the other hemd, 

E-«=i:(l')- 

n n 

,=1 «=i 

L?=i ^    ' \ 

=   ^^nf" \YjWij\      +n-fc. 

Fix a pair of chains c,, Cj.  The concavity of the chains is 
easily seen to imply that both cv jmd Cj must lie on or below 

Figure 4: The chains Cj and Cj must cross at least Wij times. 

3    Arrangements of Segments 

In this section we extend some of the proofe given above to 
the case of line segments. Let 5 be a collection of n segments 
in the plane in general position. For A: = 0,..., n—1, the fc-th 
level in the arrangement A^S) of S is defined, as in the case 
of lines, to be the closure of the set of all points w that lie on 
segments of 5 and Eire such that the open downwsird-directed 
vertical ray emanating from w intersects exactly k segments 
of 5 (that is, there are k segments of S below w). The 
coTrvpltxiiy of a level is the number of vertices of A{S) that 
lie on the level plus the number of discontinuities of the level. 
(Unhke the case of lines, a level of Af^S) is not necessarily 
connected, and it may involve vertical jumps from a segment 
to the segment lying directly above or below it, when a new 
segment starts or ends at a point below the level. Clearly; 
the number of such discontinuities is at most 2n.) As in the 
case of lines, we define V*, for k = 0,..., n — 2, to be the 
set of vertices of A(,S) (excluding segment endpoints) that 
have exactly k segments passing below them. The set of 
vertices of the A-th level, excluding segment endpoints and 
jump discontinuities, is Vt_i U 14. The level bends to the 
left at vertices of Vi_i and to the right at vertices of Vjt. See 
Figure S for an illustration. 

Theorem 3.1 The. complexity of any single level in an ar- 
rangement ofn line segments in the plane in general position 
is 0{n^^^). 
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Figure 5: The second level in an anangement of segments; 
here|F,| = laadtF2| = 4, 

than by O(wfc). In fact, in the case of segments, the bound 
O(nv'feTT) is too small for small values of k. For example, 
for fc = 0 (that is, for the lower envelope of the segments) the 
complejdty of the level can be n(na(n)) [25], wUd> is larger 
than the above bound. On the other hand, the complexity 
of the *-th level is smaller than the overall complexi^ of the 
firet * levels, whidi is 0(n(k+l)a(n/(k +1))) [22]. This is 
a better upper bound for small values of fc, D 

Second Proof (Concave Chains and Lovasz Lemma): 
We next present a second proof, based on a variant of the 
dual Loviss Lemma given above. We use the same setup 
as above. That is, for each v e F*_i, -we define the doable 
wedge Ws formed by the two lines containing the segments 
incident to v. 

First Proof (Potential Ebnction): This proof is an adap- 
tation of the potential fimction proof for the case of lines, 
as pven above. Let the ^ments be si, sj,...,»«, a»ted in 
the order of decreasing slope of their containing lines, and 
let k denote the pvcn level. Bbr wsk m, define the potenti^ 
function 

*W = 2l^J I *' lies at X at level < k). 

Assuming that all the given ^gmente are bounded, we have 
*(—oo) = #(+oo) = 0, and in any case we have, as above, 
*{i) = 0(nk) for any E. Aa we sweep A[S) bom left to 
right, ve are interested in the signed chants A*(!B) in #(i). 
The irahie of 9(x) can change only in one of the foDowing 
three cases: 

(i) X is the abscissa of the Irft endpoint of some segment 
3(, and this endpoint lies below the current fc-th level: 
In this case we have A#(s) = i — j, where «j is the 
segment that currently lira directly below the level. 
(Here we have a disrontinuity, where the level jumps 
down one segment.) Note that we may have i = j. 

(ii) ar is the alMci^a of the right endpoint of some s^ment 
Si, and this endpoint lira on or below the current fc-th 
level: In this case we have A*(a;) = j - », where Sj 
is the segmmt that currently lies on the level. (Hrac 
we have a discontinuity, where the level Jumps up one 
segment.) Again, it is possible that i = j. 

(iii) X is the ^sdssa of a vertex v € H-i (as in the case of 
lines, #(i) does not change at vertic« of 14): Suppjwe 
that V is the intereectiou of s^ments Si and »j, with 
j > i. Then A*(a;) =j-i>0. 

The number of events of typra (i) and (ii) is at most 2n, 
and the diaage in the potential at e«di of thrae events has 
ateolute v^ue 0{n% for a total diange of absolute value 
0(n*). We thus have 

£A*(s) = 0(n^), 

where the summation is taken over all x that are the ab- 
sd^ae of a wrtex of Vk-i, and each of thrae cbanps is a 
positive Int^er. 

The proof now proceeds ecsurtly as in the first proof <rf 
Thwrem 2.1, Mid we leave it to the rewler to fill in the 
straghtforward details. The difference between the ca^ of 
sepoents and of lines is that, in the case of segments, we can 
only bound the total change in potential by Oin% rather 

Lemma 3.2 For any point z eV, not lying on any line 
containing a s^ment ofS, tte number of double wedges W, 
tiuit contain z is at most 4n. 

Proofs Let us first extend the notion of concave chains to 
the case of ^gments. The chains are constructed as follo^ra. 
We start a new chain at (i) the left endpoint of any ^gment, 
if that endpoint Hes below the fe-th level, and (ii) at any 
point of discontinuity of the levd, when the level jum^ up 
from a s^ment»»to a segment Sj (the chain is started along 
the lower s^ment «j). As * increases, each chain c follows 
the segment that it lies on, except when of the following 
situMions occtirs: 

(i) c readies the right endpoint of that s^ment, and then 
c terminaAM there; 

(ii) c follows a segment Si and readies a discontinuity of 
the fc-th level, where the level jumi» down to Si, in 
which case c is terminated at that point; or 

(iii) c reaches a wrtex v € H-i, in which case c bends 
to the right, and continue along the other segment 
incident to v. 

We thus get a collection of at mc«t 2n concave chains. 
It is easy to verify that thew chains ato satisfy (appro- 
priate variants of) properties (i)-(iii) in the second proof of 
Theorem 2.1. Here the chsuns are graphs of partially-defined 
fimctions. Note that the domain of definition of some chains 
may also include intcrv^ over which the fc-th level is not 
ddined (b«;ause there are fewer than fc + 1 segments over 
sud» an interval). 

The proof can now be completed as in the case of lines, 
b«ause, for each of the at m<«t 2n chains c, a point z can 
belong to at most two double wedges W„, for v e Vk-i n c. 
D 

The proof of Theorem 3.1 now proceeds along the same 
Hues as the third proof of Theorem 2.1. 

Remarka: (1) Both proofe presented in this section also 
apply to the cases of pseudo-lines and pseudo-s^ments. We 
haw already defined the notion of a femily of pseudo-Iin^. 
A coflection S of n ^-monotone connwAed arcs is a family 
of pseudo-segments if eadi of them can be extended to an 
i-monotone connected unbounded currc, so that this fam- 
ily of cur^ is a collection of i«eudo-hnes. (This is a much 
stronger definition than jiKt requiring each par of jseudo- 
sepnents to inters«rt at most once; see Figure 6.) We leave 
it to the reader to verify that both proofe go through in 
the case of jseudo-segments, with straightforward mocMca- 
tions. 
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Figure 6: These five arcs do not form an arrangement of 
pseudo-segments. 

(2) The immediate challenge is to improve Theorem 3.1, 
and obtain a better upper bound that also depends on k. 
As noted above, such a bound cannot be 0{n\/k +1), at 
least for small values of k. 

(3) Another interesting open problem is to obtain an im- 
proved bound for the complexity of a single level in the ar- 
rangement of 9 piecewise-linear ftmctions, whose graphs con- 
sist of a total of n segments. Of course, the bound 0(n^^^) 
applies here, but perhaps one can obtEun an improved bound 
that is also a function of q and is smaller when g < n. 

4   Improved Lovisz Lemma and Arrangements of Planes 

Let P = {jTi,...,iTn} be a collection of n planes in 3-space 
in general position, and let A{P) denote the arrangement 
of P. The k-th level of A{P) is defined as the closure of 
the set of all points that lie in the union of the planes and 
have exactly k planes lying below them. The complexity of 
the level, regarded as a polyhedral surface, is the number of 
its vertices, edges and faces. This is clearly proportional to 
only the number of vertices, and we will focus on bounding 
this latter quantity. 

Theorem 4.1 The number of vertices of the k-th level of 
A(P) is Oiri'k'"^). 

As already noted, this improves the bound ©(n*"") that 
was established in [8], when k4^n, and is the first general 
bound for the case of planes that depends also on k, except 
for the 0{nk^) bound on the combined complexity of the 
first k levels [7]. Note that our new bound is smaller than 
this latter bound when k = il{r?f*). 

The proof of Theorem 4.1 follows the previous proofe 
in [2, 8]. That is, it exploits a generalization of Lov&z 
Lemma to three dimensions. We present here an improved 
version of this lemma, in arbitrary dimension, which leads 
to the improved boimd of the theorem. 

Let /f be a collection of n hyperplanes in R* in general 
position, and let 0 < fe < n — d. Let Vi denote the set of 
those vertices v of -4(H) for which exactly k hyperplanes of 
H pass below ti. For each « 6 V*, we denote by Hv the set 
of the d hyperplanes incident to v, and let Rv denote the 
closed region ('corridor') lying between the upper and lower 
envelopes of the hyperplanes of Hv 

Lemma 4.2 (Duzd liov&ax Lemma in K^) For any {d— 
2)-flat f inie', we have 

It will be more convenient to state and prove the primal 
version of this lemma. Fix a set 5 of n points in R'', in 
general position. A k-set simplex is a (d — l)-dimensional 
simplex spanned by d points of 5 with the property that its 
affine hull has precisely k points of 5 on one side of it. 

Lemma 4.3 (Primal Lav&az Lemma in Df ) Let S be a 
finite point set in If. Then, for any line t, the nvmber of 
k-set simplices meeting I is 0(ik''~*). 

Proof: Note that this formulation of the lemma is inde- 
pendent of the choice of the coordinate system. Construct a 
coordinate system in which t coincides with the xj-axis. Du- 
alize S to a system S' of n hyperplanes, using the standard 
duality that maps a point (ai,...,ad) to the hyperplane 
Xd = —aiXi —02X2 — • Od-iXd-i +a<{, and a hyperplane 
Xd = 61X1-1-6212-1 hbd-tXi-i+bd to the point (61, ...,bd) 
(see, e.g., [9]); this duaUty preserves incidences and above- 
below relationships between points and hyperplanes (that is, 
a point p Ues below, on, or above a hyperplane h if auid only 
if the dual hyperplane p* of p hes below, on, or above the 
point h' dual to h). An application of such a duality also 
shows that this lemma and the preceding one are indeed 
dual versions of each other. It suflices to count the num- 
ber of k-set simplices whose aSiae hulls have k points of S 
strictly below them. The remaining class of fc-set simplices 
is handled by a sjTnmetric argument. 

The properties of the duality imply that the affine hull 
of a k-set simplex A as above is mapped into a vertex A' 
of the arrangement of 5* which has precisely k hyperplanes 
below it (and d hyperplanes passing through it). Hence A* 
is a vertex of the k-th level of .4(5*). Moreover, A meets 
the Xd-Bjos t if and only if the horizontal hyperplane through 
A* is contained in R^-, i.e., A* is a local maximum of the 
fc-th level of A{S')} Indeed, A meets I if and only if ev- 
ery hyperplane that contains t does not have all vertices of 
A on one side. The set of these hyperplanes is mapped by 
our duality to the set of all the points at infinity in horizon- 
tal directions. Hence A meets I if and only if every point 
at infinity in a horizontal direction lies in i?A*, which is 
equivalent to the condition that the horizontal hyperplane 
through A* is contained in J?A« , as asserted. As shown by 
Clarkson [6], the number of local extrema of the fc-th level 
in an arrangement of hyperplanes in d-space is 0(fc''"'), and 
this completes the proof of the lemma. D 

Proof of Theorem 4.1: Dey and Edelsbrunner [8] have 
shown that if T is a collection of t triangles in 3-space, 
spanned by n points in general position, then there exists a 
line I that crosses n(t*/n') triangles of T. Specifically, con- 
sider the collection of the k-set triangles of an n-point set S. 
Lemma 4.3 implies that no line can cross more than 0{k^) 
of these triangles. Combining this with the result of [8], we 
have |Vtp/n' = 0(Jt*), and the bound follows. D 

5   Arrangements of Triangles 

Let T = {Ai,..., An} be a collection of n triangles in 3- 
space in general position, and let A{7^ denote the arrange- 
ment of T. The fc-th level of A{T) is defined, again, as 
the closure of the set of all points that lie in the union of 
the triangles and have exactly it triangles lying below them 
(that is, the relatively open verticaJ downward-directed ray 

{v€Vk\fCRv} =0(k''-') 
^The connection between local extrema of it-levels and Lovisz 

Lemma was first observed by Clarkson, as briefly remarked in the 
introduction of [6]. 
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emergiBg from such a point intersects exMtly fe triangles). 
As in the c^e of segments, the fc-th level is not necessar- 
ily connected, and may have jump dfecontimuti^ at points 
that lie %«rtically aborc or on wme triangle edge. The com- 
plexity of the level, regarded as a polyhcdrsJ suife», is the 
number of its verticM, edps and faces. Assuming general 
ptsition, this is clearly proportional to the number of ver- 
tices only, and we will focus on bounding the number of 
inner wrtices, which are incident to three distinct triangles. 
Any other, 'outer' vertex of the level lies in the verticd plane 
He spanned by some triangle ed^ e. MOTCover, if we inter- 
sMt all the triangles with He, we ^t a collection of at mcwt 
n segments, and the vertices of the fe-th level of v4(T) that 
lie in H^ sie vertices rf the k-th level of the 2-dimeisionid 
arrangement of these segments within He, where e itself is 
also included. By Theorem 3.1, the number of such vertices 
is 0(n^^^). Repeating this anriysis for each triangle edge e, 
we conclude that the number of outer -rortic^ of the levd is 

We bound the number of inner vertices using a variant 
of the dual vereion of Lov4sz Lemma in 3-sp8M:e. The bound 
that we obtain is ojnsidetably weaker than the one given in 
Lemma 4.2, but is still nontrivial. The proof of this version 
of the lemma is also <Ufferent and somewhat more involved. 

Let V be an inner ■rertex of the fc-th level, incident to 
three triangles Ai, As, Az; v can be clarified into three 
categories, depending on whether the k-th le^ in the nei^- 
borhood of v coincides with 

(a) the lower envelope of Ai, Aj, A3, 

(b) the first level of the arrangement .A({Ai, ^2, A3}), or 

(c) the upper envelope of Ai, As, As. 

Note that v«tic^ of type (b) have the property that aB six 
edges of A(T) incident to the vertex lie on the fe-th level, 
whereas for vertices of type (a) or (c), only three of these 
edgffi lie on the level, one edge on each ^gment of intersec- 
tion of two of the triangles Ai, Aa, A3. 

fbr each inner vertex v of the *-th level of type (a) or 
(c), let R„ be the closed r^on enclosed between the upper 
envelope and the lower envelope of the tliree plmies con- 
taining the three triangles incident to w; see F%are 7 for a 
cHws-s«Aion of such an ii». We have the following weaker 
^Bsion of Lovisz lemma: 

Lemma 6.1 Any line in W? is fully mntained in at most 
0(n*/*) regiom R, of vertices of type (a) and (c). 

Proof: Let <i be a line in W, and let H be the verticd plane 
containing €i. For a triangle A € T, let w^ be the plane 
contiunii^ A and i?^ = ir^DH, Let Aa be the arrwigement 
in if of the lines {ati | A € T}. Let ^ be a line contained 
in if, parallel to li, and lying below all vertices of AH. It 
is easily checked that no repon B, contains <o. We will 
move a line t within H upwards, parallel to itself, from the 
position when it coincides with to until it coincides with It. 
We Mtimate the change in the numba- of regiom R„ that 
contaun € as it moves. Summing thse changes yields the 
bound on the desired quantity for ti. 

The set of r^ons ft, that fully contan t can change only 
when t p^ws through a wrtex of AH- Clearly, the vertex 
X = ffAi ner^j has to be such that there is ai inner type-{a) 
or type-{c) vertex B in .4 incident to Ai and A2. Under these 
assumptioM, for t to baome newly contained in a repon ft,, 
or to stop being contained in ft,, as it sweeps past such a 
vertex %, it is necessary and sufficient that the slope of I lie 

between the slopes of ff^j and O-AS; see Figure 7(a). Let % 
be such a vertex (where this l^ter condition also holds). Put 
A = jr^i n WAJ. Let s C A be the segment Ai n Aj. For all 
repons ft, that either start or stop containing € as it siroeps 
over X. B is contwned in a, so it suffices to concentrate only 
on such regions R„. 

(b) 

Figure 7: (a) Cross section of a repon ft, in H; the line t 
jiKt become contained in ft; (b) cro^ section of A(T) by 
■K; the intersortions of ft,, fl» with w are shaded near the 
respective vertices. 

We mark on « all the inner vertices of the fc-th levd of 
^(T) of types (a) and (c), and consi^r the set of maximal 
subiirtervals of B not contain^ in the fe-th lewl. Each such 
subinterval / is delimited by two points «, B, each erf which is 
an inner vtttex of the levd of type (a) or (c) (it cannot be a 
vattex of type (b) becau^ all six edges incident to a type-(b) 
vertex lie on the fe-th level), a point of jump dkcontinuity of 
the level, or an endpoint of s. Let q, be the number of jump 
discontinuities of the fe-th lewl along ». Note that each such 
discontinuity is an outw vertex of the Ifc-th levd. If an inner 
vert^ « is an endpoint of an interval along a whose other 
endpoint v' is dthor a J\unp discontinuity or an endpoint of 
s, we charge w to w'. The number of such inner vertices (and 
therefore the chan^ in the number of r^ons that contadn 
I, ccmresponding to such vertices) is at m<»t q, + 2. 

Next, consider an interval I, both of whcse endpoints are 
inner vertic^, say it and ». Consider the vertical plane v 
containing A, and the cross-action of A{T) within w (refer 
to Figure 7(b)), Clearly, the ft-th level of this cr<^section 
is contained in the fc-th levd of A{T), so it either lies fiilly 
above / or fiilly bdow /. In the fbimor case both u and w 
are of type (c), and in the latter case th^ are both of type 
(a). Let 7 be the vertical line H fUr, and let 4 = fla D 7 
and ie = ft, n 7. If X 0 1, then it is easily checked that 
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Su and Su lie on opposite sides of x along 7 and thus are 
disjoint except at their common endpoint x- This fact, and 
our assumptions that the slope of ( is between the slopes 
of ffu = Au n H and <7v = Av n H, imply that one of Hu., 
Rv must be added, and the other one removed, from the 
set of regions containing f, as t sweeps over x- Hence, as t 
sweeps over Xi Ru and Rv "cancel" out each other, in terms 
of containment of /. 

To summarize, we have shown that as i passes through 
X, the change in the number of regions Rv cont^ning ^ is at 
most A+q,. This implies that the number of regions Rv that 
contain £ in its final position /?i is at most '^,{A+q,), where 
the sum is over all Oin") intersection segments between pairs 
of triangles in T. Since the number of outer vertices on the 
k-th level is 0{n^'^), as argued above, and each is counted at 
most three times, J^^ q, = 0(n'^*). The number of regions 
containing / is thus 0(n*)+0(n*''*) = 0(n'''^), as asserted. 

What if t\ actually passes through a vertex x — '^^it ^ 
oti.j of Anf Then the cancellation does not occur, which 
ados fewer than n regions Rv that can contain t—each such 
region corresponds to some vertex of A{T) on the segment 
A<nAj. D 

Theorem 6.2 The complexity of any single level in an ar- 
rangement ofn triangles in S-space is 0(n'^''*). 

Proof: Lemma 5.1 implies that no line t is contciined in 
more than 0(n*''*) regions Rv. Passing to the dual space, 
we obtain the following equivalent formulation, similar to 
the case of planes: The planes containing the triangles in 
T are mapped to a set of n points. Each inner vertex v of 
the k-th level is mapped to a triangle spanned by the three 
points dual to the planes contsdning the triangles incident 
to V. The line I is mapped to another line £*, juid t is 
contained in Rv if and only if I' crosses the triangle dual 
to i;. We now have a system of X triangles in 3-space, 
spanned by a total of n points, where X is the number of 
inner vertices of the fc-th level of types (a) and (c). As in 
the proof of Theorem 4.1, there exists a line that crosses 
at least n(X'/n*) such triangles [8]. On the other hand, 
by Lemma 5.1, this number is at most 0{n^^^). Combining 
these two inequalities yields X = 0{n"^^). We still need to 
bound the number of vertices of type (b). However, these 
vertices are vertices of type (a) of the (k - l)-st level, so, 
repeating the above analysis for this level, we obtain the 
boimd asserted in the theorem. D 

Remark: An open problem is to extend Lenunas 4.2 and 5.1 
to the respective cases of pseudo-hyperplanes and pseudo- 
triangles, under appropriate definitions of these objects, Jind 
then to extend the proof of Theorem 5.2 to these cases. Note 
that there are two different problems to address: One is to 
extend Lov^z Lemma, and the other calls for a dual eoid 
more general version of the anzdysis technique of [8] (that 
yields a line that stabs many triangles). 
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and Ken Clarkson for pointing out a much simpler reduc- 
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